Quantum and Photonics Science Lab (Quanics)
The primary goal of the Quanics Lab is to advance Quantum and Photonics Technologies which include nano-devices with custom-designed light-matter interactions (i.e., light generation, detection and conversion) and nano-devices for quantum computing andquantum sensing applications. For this purpose, we investigate a wide range of nano-materials including semiconductors (III-Vs, Si, Ge, SiGe, etc.), emerging 2D materials and metal-organic systems. We also study low-dimensional nanostructures such as impurities in semiconductors, quantum dots, quantum wells, nanowires, nano-crystals and nano-rods.
We are computational scientists, and our research is driven by the development and application of high-end multi-scale computational methods based on DFT, tight-binding (TB) and molecular dynamic (MD) theories. An integral component of our work is the development and application of advanced machine learning tools in materials discovery, as well as in characterisation, control and operational aspects of qubit devices and scalable error-corrected quantum computer architectures. We are also interested in probing condensed-matter and spin physics at the fundamental scale in solid-state environments.

Quantum and Photonics Science Lab (Quanics)
ASSOCIATE MEMBERS AQSN
Spiro Gicev
PHD STUDENT
Peiyong Wong
PHD STUDENT
Than-Hoa Nguyen
PHD STUDENT
Maxwell West
PHD STUDENT
Shaobo Zhang
PHD STUDENT
Quin Arnold
MSC STUDENT
Shu Lok Tsang
MSC STUDENT
Brhyeton Hall
MSC STUDENT
Canaan Yung
MSC STUDENT
Hollis Huang
MSC STUDENT